
Concept of Scalar Field

Example

Consider temperature in a room in your house. Room is a region of space where a ‘temperature’ field exists.
Normally, we consider only single value for temperature of a room where we consider the average
temperature. This concept of room temperature vanishes when the room under consideration is a kitchen;
the temperature would be higher when you are close to stove and would be lower elsewhere.

So temperature is a ‘field’ that can be associated with every point inside the room.

✓ A scalar field, means every point in a region of space corresponds to a scalar quantity.

The temperature field T(x,y,z) is a scalar field because the field quantity “temperature” is a scalar.

Concept of Vector Field

Examples:
1. Consider wind velocity inside a room. The contributing factors in

this case are fans, open window, open doors ,etc. Wind velocity
can be different (in magnitude and direction) in different points
inside the room.

2. Consider the interaction between two charged particles. The
lines of force shows the direction of ‘electric filed’.

✓ A vector field, means every point in a region of space that corresponds to a vector quantity.
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It is a vector form of the partial  differential operator and is called ‘del’

Directional Derivative

Gradient { 𝛁A }

(1) Magnitude of the gradient at a point is the maximum possible magnitude of the directional derivative at 
that point, and

(2) Direction of the gradient is that direction in which the directional derivative takes maximum value.

Gradient of a scalar field is a vector field and its direction is normal to the level surface.

Divergence

The dot product of 𝛁 with a vector function is known as divergence of the vector function.

Let Ԧ𝐴 = Ƹ𝑖𝐴𝑥 + Ƹj𝐴𝑦 + ෠𝑘𝐴𝑧
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Physical significance
Divergence of a Vector filed is a Scalar and it is a measure of the amount of spread of the field at a point.

OR
Divergence of a vector function gives the net outflow (outflow minus inflow) per unit volume at a point.

ELECTROMAGNETIC THEORY
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In electrostatics, we see that the field produced by a positive charge
has positive divergence while a negative charge produces an
electrostatic field with negative divergence.

In case of a magnetic field, sine magnetic monopoles do not exist, the
magnetic flux entering a unit volume is equal to that leaving the volume.

𝛁. 𝐁 = 𝟎
Magnetic lines of force always form closed loops.

If the outflow is greater than inflow ,divergence is positive and if the outflow is less than inflow ,divergence
is negative.

Curl

The cross product of 𝛁 with a vector function is known as curl of the vector function.

Consider a vector Ԧ𝐴 = Ƹ𝑖𝐴𝑥 + Ƹj𝐴𝑦 + ෠𝑘𝐴𝑧
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The name curl comes from “circulation” which measures how much does a vector field “curls” about a 
point.

OR
Curl of a vector field measures the tendency of the vector field to rotate about a point.  

✓ Curl of a vector field at a point is a vector that points in the direction of axis of rotation and has
magnitude which represents the speed of rotation.

Consider flow of water and we want to determine if it has curl or not: is there any twisting or pushing force?
To test this, we put a paddle wheel into the water and notice if it turns.
If the paddle does turn, it means this field has curl at that point. If it doesn't turn, then there's no curl.
What does it really mean if the paddle turns? Well, it means the water is pushing harder on one side than
the other, making it twist. The larger the difference, the more forceful the twist and the bigger the curl.
Also, a turning paddle wheel indicates that the field is "uneven" and not symmetric; if the field were even,
then it would push on all sides equally and the paddle wouldn't turn at all.
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Stokes Theorem

The surface integral of the curl of a vector function taken over a surface is equal to the line integral of 
the vector function taken over  the boundary of the surface.

න

s

( ∇xA ). 𝑑𝑠 = ර
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Gauss’s Divergence Theorem

න

V

(∇. A )dv = න

S

A. ds

The volume integral of divergence of a vector function is equal to the surface integral of  the vector 
function taken over a closed surface.

Equation of Continuity

The total current flowing out of some volume must be equal to the rate of decrease of change within
the volume. This indicates the conservation of charge.
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Where ρ is the charge  per unit volume. If the region of integration is stationary,  
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By using Gauss theorem,  
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∇. ԦJ =
−𝜕ρ

𝜕t

∇. ԦJ +
𝜕ρ

𝜕t
= 0

This is the equation of continuity, Where ρ is charge per unit volume or charge density and J is the current 
density

Line Integral, Surface Integral & Volume Integral

Lines integral means the path is under consideration is to be divided into infinitesimal segments and the
quantity in question is to be evaluated for each segments and the sum is taken for the entire path.

Surface integral means the surface is under consideration is to be divided into infinitesimal elemental areas
and the quantity in question is to be evaluated for each elemental area and the sum is taken for the entire
surface.

Volume integral means the volume is under consideration is to be divided into infinitesimal elemental
volumes and the quantity in question is to be evaluated for each elemental volume and the sum is taken
for the entire volume.
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Maxwell’s Equations
The electromagnetic wave phenomena are governed by a set of four equations known as Maxwell’s field
equations. Through these equations , Maxwell unified the laws of electricity and magnetism

∇. D = ρ

∇. B = 0

∇xE = −
𝜕𝐵

𝜕t

∇xH = ԦJ +
𝜕𝐷

𝜕t

First equation is the statement of Gauss’s Law in electrostatics. It is also called electric flux equation. Second
equation explains Gauss’s Law in magnetism. Third equation describe Faraday’s law of electromagnetic
induction. Fourth equation is the statement of modified Ampere’s circuital law

Derivation of First Equation

According to Gauss’ law of  electrostatics, the total normal electric flux through a closed surface is equal to  
1/εo times the charge enclosed in the volume
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Using Gauss  divergence theorem
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∇. D = ρ This is Maxwell’s first equation 

Where  ρ is charge density , E-electric field intensity  and
D –electric displacement vector

Derivation of Second Equation

By Gauss’ law of magnetism, the net magnetic flux emerging through any closed surface is zero

න

s

B. ds = 0

By using Gauss  divergence theorem,  

න

s

B. ds = න

v

∇. B dv

׬
v

∇. B dv = 0

∇. B = 0

This equation holds good for any arbitrary volume V

This is Maxwell’s second equation 
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Derivation of Third Equation

According to Faraday’s law of electromagnetic induction, induced  emf in a circuit is proportional to 
negative times rate of change of magnetic flux. 

V = −
𝜕ϕ

𝜕t
--------------------------------------------------------------------------------------------------- (1)

Emf is defined as work done in taking a unit positive charge around  closed path.

φ ׬=
s
B. dsWhere ----------------------------------------------------------------------------------------------- (2)

𝑉 = ර

l

𝐸. dl ----------------------------------------------------------------------------------------------- (3)

Using equation (2) and (3) in eqn (1)

ර

l

𝐸. dl = −න

s

𝜕B

𝜕t
. ds

By using Stoke’s theorem

ර

l

𝐸. dl = න

s

( ∇xE ). 𝑑𝑠

--------------------------------------------------------------------------------------- (4)

------------------------------------------------------------------------------------ (5)

From eqns (4) and (5)

න

s

( ∇xE ). 𝑑𝑠 = −න

s

𝜕B

𝜕t
. ds

∇xE = −
𝜕B

𝜕t
This is Maxwell’s third equation 

Ampere’s circuital law states that line integral of magnetic flux density B around a closed path is equal to μ0

times the  total current enclosed in the path

ׯ
l
B. dl = μ0 I

Since and B = μ0H I = න

s

ԦJ . ds

ׯ
l
μ0H. dl = μ0 s׬

ԦJ . ds

ׯ
l
H. dl = ׬

s
ԦJ . ds

By using Stoke’s theorem on LHS

׬
s
(∇xH) . ds=׬

s
ԦJ . ds

∇xH = ԦJ --------------------------------------------------------------------------------------------- (1)

Derivation of Fourth Equation

Maxwell showed that ampere’s circuital law is inconsistent . Taking divergence on both sides of eqn (1) 

∇. ∇xH = ∇. ԦJ ----------------------------------------------------------------------------------------- (2)

Divergence of curl of a function is zero which means. 

∇. ԦJ = 0 ------------------------------------------------------------------------------------------ (3)
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∇. ԦJ = −
𝜕ρ

𝜕t

So Maxwell removed the inconsistency by introducing the concept of displacement current. Using the 
Maxwell’s first law

∇. ԦJ = −
𝜕(∇. 𝐷)

𝜕t

This violates the general equation of continuity 

∇. [ ԦJ +
𝜕𝐷

𝜕t
] =0 ------------------------------------------------------------------------------------------ (5)

------------------------------------------------------------------------------------------ (4)

Equation  (5) replaces eqn(3) in the general case.

The  total current density  consists of  two terms ; conduction current density ԦJ and displacement current 

density 
𝜕𝐷

𝜕t
. Maxwell modified eqn (1) as 

∇xH = ԦJ +
𝜕𝐷

𝜕t
This is Maxwell’s fourth equation 

A- cross sectional area

L

Consider a conductor of length L and cross sectional area A. Current I flows on applying a potential
difference V (electric field intensity E).

Resistance of the conductor  is  

𝑅 =
𝐿

𝜎𝐴 σ is conductivity

𝑉 = 𝐸𝐿

By Ohm’s law 𝑉 = 𝐼𝑅

𝐸𝐿 = 𝐼𝑅

𝐸𝐿 = 𝐼
𝐿

𝜎𝐴

𝜎𝐸 =
𝐼

𝐴
Ԧ𝐽 = 𝜎𝐸

J is the  conduction current per unit area

Conduction Current is due to movement of electric charges in a conductor when an electric field is applied. 

Conduction Current 

Displacement Current

Displacement Current is due to electric field that changes with time. 

𝐽 =
𝐼

𝐴

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
𝐶 =

𝜀𝐴

𝑑
𝑉 = 𝐸𝑑

𝐽 =
𝐶

𝐴

𝑑𝑉

𝑑𝑡

𝐽 =
𝜀𝐴

𝐴𝑑

𝑑(𝐸𝑑)

𝑑𝑡
=
𝜀𝐴𝑑

𝐴𝑑

𝑑𝐸

𝑑𝑡

Consider a parallel plate capacitor of capacitance C. If the capacitor is charging and discharging, then

and

Current density
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𝐽 =
𝜀𝑑𝐸

𝑑𝑡

Ԧ𝐽 =
𝑑𝐷

𝑑𝑡

This is displacement current which arises only when there is a change in electric field

Conduction Current Displacement Current

It is due to flow of electric charge It is due to electric field that change with time

It obey Ohm’s law It does not obey Ohm’s law

Conduction current density is represented by   

𝐽 = 𝜎E

Displacement current density is represented by 

𝐽 =
𝜀𝑑𝐸

𝑑𝑡

It is the actual current It is apparent current produced by time varying 
electric field

Conduction current in perfect vacuum is zero. Displacement current has finite value in vacuum.

Electromagnetic Waves in Free Space

∇. D = ρ

∇. B = 0

∇xE = −
𝜕B

𝜕t

∇xH = ԦJ +
𝜕D

𝜕t

∇. E = 0

∇. H = 0

∇xE = −μ0
𝜕H

𝜕t

∇xH = ε0
𝜕E

𝜕t

--------------------------------------------------------------(1)

--------------------------------------------------------------(2)

--------------------------------------------------------------(3)

--------------------------------------------------------------(4)

In free space σ=0  and ρ=0 and therefore Maxwell’s equations for free space are

Maxwell’s equations are

∇x(∇xE) = −μ0
𝜕(∇xH)

𝜕t

Taking curl on both sides of eqn(3)

∇x ∇xE = ∇ ∇. E − ∇2E ∇xH = ε0
𝜕E

𝜕t

∇ ∇. E − ∇2E =- μ0
𝜕

𝜕t
(ε0

𝜕E

𝜕t
)

∇ ∇. E − ∇2E =-μ0ε0
𝜕2𝐸

𝜕𝑡2

∇2E = μ0ε0
𝜕2𝐸

𝜕𝑡2

From eqn (1)  ∇. E = 0

--------------------------------------------------------------(4)
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∇x(∇xH) = ε0
𝜕(∇xE)

𝜕t

Taking curl on both sides of eqn(4)

By vector calculus and from eqn (3) ∇x ∇x𝐻 = ∇ ∇.H − ∇2H ∇xE = −μ0
𝜕H

𝜕t

∇ ∇.H − ∇2H =- ε0
𝜕

𝜕t
(μ0

𝜕H

𝜕t
)

∇ ∇.H − ∇2H =-μ0ε0
𝜕2𝐻

𝜕𝑡2

∇2H = μ0ε0
𝜕2𝐻

𝜕𝑡2

From eqn (2)  ∇. H = 0

--------------------------------------------------------------(5)

∇2Ψ =
1

v2
𝜕2Ψ

𝜕t2

Comparing equations (4) and (5) with standard wave equation shows that E and H are propagating as a 
waves

1

v2
= μ0ε0

v= 
1

μ0ε0

Substituting the values μ0 = 4π x 10-7 Hm-1 and ε0 =8.85 x 10-12 Fm-1

v= 
1

8.85 x 10−12 Fm−1 x 4π x 10−7 Hm−1
= 2.99794x108 ms-1

This is same as the experimentally determined value of velocity of the light. This coincidence led Maxwell to 
assume that light is an electromagnetic wave.

F=s2H-1

When electromagnetic wave is propagated through space, energy is transferred from source to receiver.
Poynting’s theorem states that ‘the rate of energy flow outward through unit area of a source in a direction
normal to the surface is given by

S = E x H

Where S is the Poynting vector which represents the instantaneous power density vector associated with

electromagnetic field at any point. Poynting vector S is normal to both E and H.

Poynting’s Theorem
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